Preconditioning for radial basis functions with domain decomposition methods
نویسندگان
چکیده
In our previous work, an effective preconditioning scheme that is based upon constructing least-squares approximation cardinal basis functions (ACBFs) from linear combinations of the RBF-PDE matrix elements has shown very attractive numerical results. The preconditioner costs O(N2) flops to set up and O(N) storage. The preconditioning technique is sufficiently general that it can be applied to different types of different operators. This was applied to the 2D multiquadric method, with c ∼ 1/ √ N on the Poisson test problem, the preconditioned GMRES converges in tens of iterations. In this paper, we combine the RBF methods and the ACBF preconditioning technique with the domain decomposition method (DDM). We studied different implementations of the ACBF-DDM scheme and provide numerical results for N > 10, 000 nodes. We shall demonstrate that the efficiency of the ACBF-DDM scheme improves dramatically as successively finer partitions of the domain are considered. c © 2004 Elsevier Science Ltd. All rights reserved. Keywords—Radial basis function, Domain decomposition, Approximate cardinal basis function, Preconditioner, Partial differential equation.
منابع مشابه
Preconditioners for pseudodifferential equations on the sphere with radial basis functions
In a previous paper a preconditioning strategy based on overlapping domain decomposition was applied to the Galerkin approximation of elliptic partial differential equations on the sphere. In this paper the methods are extended to more general pseudodifferential equations on the sphere, using as before spherical radial basis functions for the approximation space, and again preconditioning the i...
متن کاملSolution to the Neumann problem exterior to a prolate spheroid by radial basis functions
We consider the exterior Neumann problem of the Laplacian with boundary condition on a prolate spheroid. We propose to use spherical radial basis functions in the solution of the boundary integral equation arising from the Dirichlet-to-Neumann map. Our approach is particularly suitable for handling of scattered data, e.g. satellite data. We also propose a preconditioning technique based on doma...
متن کاملThe method of radial basis functions for the solution of nonlinear Fredholm integral equations system.
In this paper, An effective and simple numerical method is proposed for solving systems of integral equations using radial basis functions (RBFs). We present an algorithm based on interpolation by radial basis functions including multiquadratics (MQs), using Legendre-Gauss-Lobatto nodes and weights. Also a theorem is proved for convergence of the algorithm. Some numerical examples are presented...
متن کاملCoupling Projection Domain Decomposition Method and Meshless Collocation Method Using Radial Basis Functions in Electromagnetics
This paper presents an efficient meshless approach for solving electrostatic problems. This novel approach is based on combination of radial basis functions-based meshless unsymmetric collocation method with projection domain decomposition method. Under this new method, we just need to solve a Steklov-Poincaré interface equation and the original problem is solved by computing a series of indepe...
متن کاملTHE COMPARISON OF EFFICIENT RADIAL BASIS FUNCTIONS COLLOCATION METHODS FOR NUMERICAL SOLUTION OF THE PARABOLIC PDE’S
In this paper, we apply the compare the collocation methods of meshfree RBF over differential equation containing partial derivation of one dimension time dependent with a compound boundary nonlocal condition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mathematical and Computer Modelling
دوره 40 شماره
صفحات -
تاریخ انتشار 2004